A Multigrid Fluid Pressure Solver Handling Separating Solid Boundary Conditions

Nuttapong Chentanez

Matthias Müller

Monday, August 15, 2011
Main Contributions

• Multigrid method for solving the weighted Poisson equations
 – From the variational framework for fluid simulation in Batty et al. 07 (BBB07), Batty and Bridson 08

• Modifications to solve LCP
 – To enforce separating solid boundary condition
Example

\[(u - u_s) \cdot n_s = 0\]

\[(u - u_s) \cdot n_s \geq 0\]
Example

\[(u - u_s) \cdot n_s = 0\]

No wall separating boundary condition

\[(u - u_s) \cdot n_s \geq 0\]

With wall separating boundary condition (Node Base)
Background

Foster and Fedkiw 01

Houston et al. 03

Rasmussen et al. 04

BBB07
Method

- Inviscid Incompressible Euler Equations

\[
\frac{\partial \mathbf{u}}{\partial t} = - (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{f}{\rho} - \frac{\nabla p}{\rho}
\]

- Subject to \(\nabla \cdot \mathbf{u} = 0 \)

- Inside region \(\phi < 0 \),

\[
\frac{\partial \phi}{\partial t} = - \mathbf{u} \cdot \nabla \phi
\]
Method

- Discretize to staggered grid as in BBB07

- Cell center
 - Pressure p, level set ϕ, solid fraction V

- Face center
 - Components of velocity $u = [u, v, w]^T$
 - Face center solid fraction V_u, V_v, V_w
Method

- Time integration
 - Standard grid based sim

- Novelty in pressure projection

- Velocity Extrapolation
- Level Set Reinitialization
- Velocity and Level Set Advection
- Pressure Projection

Monday, August 15, 2011
Pressure Projection

- Let u^* be the velocity field before pressure projection.
- Then

$$u^{n+1} = u^* - \frac{\Delta t}{\rho} \nabla p$$
Pressure Projection

- Let u^* be the velocity field before pressure projection
- Then
 $$u^{n+1} = u^* - \frac{\Delta t}{\rho} \nabla p$$
- Kinematic energy of the liquid
 - Integrated over the liquid domain
 $$\frac{1}{2} \int u^{n+1} \cdot u^{n+1} dV$$
 - Take solid fraction and free surface location into account
Pressure Projection

- Let u^* be the velocity field before pressure projection
- Then
 \[u^{n+1} = u^* - \frac{\Delta t}{\rho} \nabla p \]
- Kinematic energy of the liquid
 - Integrated over the liquid domain
 \[\frac{1}{2} \int u^{n+1} \cdot u^{n+1} dV \]
 - Take solid fraction and free surface location into account
- Pressure p found by minimizing the kinetic energy, BBB07
 - Automatically yields divergence free velocity field
Separating Solid Boundary Condition

• Commonly used fluid solver enforces

\[(u - u_s) \cdot n_s = 0\]

 – On the solid boundary
 – Neumann boundary condition
 – Yields linear system that must be solved for \(p\)

• For a static ceiling with \(u_s = 0\),
 – Liquid sticks unnaturally
Separating Solid Boundary Condition

• BBB07 propose to enforce
 \[(u - u_s) \cdot n_s \geq 0\]
 - If liquid separates from the solid then it becomes a free surface \(p = 0\)
 - Otherwise, \(p > 0\) disallowing suction

• Hence
 \[0 \leq p \perp (u - u_s) \cdot n_s\]
 - Linear Complementarity Problem (LCP)
 - Only need to enforce \(p \geq 0\), BBB07
Multigrid LCP solver

- We propose to use a multigrid solver for this
- Important observation
 - Don’t need to enforce $p \geq 0$ exactly on solid surface
 - Just need to enforce at solid nodes next to liquid

With wall separating boundary condition (Edge Base) With wall separating boundary condition (Node Base)
Multigrid LCP solver

- We propose to use a multigrid solver for this.
- Important observation
 - Don’t need to enforce $p \geq 0$ exactly on solid surface
 - Just need to enforce at solid nodes next to liquid
Multigrid LCP solver

- We propose to use a multigrid solver for this
- Important observation
 - Don’t need to enforce $p \geq 0$ exactly on solid surface
 - Just need to enforce at solid nodes next to liquid
Multigrid LCP Solver

• Adapt from MG Solver in Chentanez & Müller 11

• Idea
 – Replace Gauss Seidel with Projected Gauss Seidel

\[Ap = b \]
Multigrid LCP Solver

- Adapt from MG Solver in Chentanez & Müller 11

- Idea
 - Replace Gauss Seidel with Projected Gauss Seidel

\[
A_{i,j,k}^i p_{i,j,k} + A_{i,j,k}^{i+1} p_{i+1,j,k} + A_{i,j,k}^{i-1} p_{i-1,j,k} + \ldots = b_{i,j,k}
\]
Multigrid LCP Solver

- Adapt from MG Solver in Chentanez & Müller 11
- Idea
 - Replace Gauss Seidel with Projected Gauss Seidel

\[
p_{i,j,k} = \frac{1}{A_{i,j,k}} \left(b_{i,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - \ldots \right)
\]
Multigrid LCP Solver

- Adapt from MG Solver in Chentanez & Müller 11

Idea
- Replace Gauss Seidel with Projected Gauss Seidel

\[p_{i,j,k} = \frac{1}{A_{i,j,k}} (b_{i,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - \ldots) \]

- Gauss Seidel applies the above equation iteratively
Multigrid LCP Solver

• Adapt from MG Solver in Chentanez & Müller 11

• Idea
 – Replace Gauss Seidel with Projected Gauss Seidel

\[
p_{i,j,k} = \max\left(p_{\min \ i,j,k}, \frac{1}{A_{i,j,k}} (b_{i,j,k} - A_{i+1,j,k} p_{i+1,j,k} - \ldots)\right)
\]

• Projected Gauss Seidel applies the above equation iteratively, where

\[
p_{\min \ i,j,k} = \begin{cases} 0 & \text{if } i,j,k \text{ is inside a solid} \\ -\infty & \text{otherwise} \end{cases}
\]
Multigrid LCP Solver

- Build hierarchy of grids
 - 8-to-1 down sampling (in 3D)
 - Down sampling ϕ specially
- Preserving air bubbles in a few finest levels, Chentanez & Müller 11
Algorithm 2 V_Cycle(m)
1: if \(m == 1 \) then
2: Solve the linear system, \(A^1 p^1 = b^1 \)
3: else
4: for \(i = 1 \) to num_Pre_Sweep do
5: Smooth(\(p^m \)) and enforce \(p^m \text{min} \) (PRBGS)
6: end for
7: \(r^m = b^1 - A p^m \)
8: \(b^{m-1} = \text{Restrict}(r^m) \)
9: \(p^{m-1} = 0 \)
10: if \(m > M - S \) then
11: \(p^{m-1}_\text{min} = \text{DownsampleSubtract}(p^{m-1}_\text{min}, p^m) \)
12: else
13: \(p^{m}_\text{min} = -\infty \)
14: end if
15: V_Cycle(m - 1)
16: \(p^m = p^m + \text{Prolong}(p^{m-1}) \)
17: for \(i = 1 \) to num_Post_Sweep do
18: Smooth (\(p^m \)) and enforce \(p^m \text{min} \) (PRBGS)
19: end for
20: end if
Algorithm 2 V_Cycle(m)

1: if \(m = 1 \) then
2: \[
3: \text{Solve the linear system, } A^1 p^1 = b^1
4: \]
5: else
6: for \(i = 1 \) to num_Pre_Sweep do
7: Smooth(\(p^m \)) and enforce \(p^m_{\text{min}} \) (PRBGS)
8: end for
9: \(r^m = b^l - A p^m \)
10: \(b^{m-1} = \text{Restrict}(r^m) \)
11: \(p^{m-1} = 0 \)
12: if \(m > M - S \) then
13: \(p^m_{\text{min}} = \text{DownsampleSubtract}(p^m_{\text{min}}, p^m) \)
14: else
15: \(p^m_{\text{min}} = -\infty \)
16: end if
17: V_Cycle(m - 1)
18: \(p^m = p^m + \text{Prolong}(p^{m-1}) \)
19: for \(i = 1 \) to num_Post_Sweep do
20: Smooth(\(p^m \)) and enforce \(p^m_{\text{min}} \) (PRBGS)
21: end for
22: end if
Multigrid LCP Solver

Algorithm 2 V_Cycle(m)

1: if $m == 1$ then
2: Solve the linear system, $A^1 p^1 = b^1$
3: else
4: for $i = 1$ to num_Pre_Sweep do
5: Smooth(p^m) and enforce p^m_{\min} (PRBGS)
6: end for
7: $r^m = b^1 - A p^m$
8: $b^{m-1} = \text{Restrict}(r^m)$
9: $p^{m-1} = 0$
10: if $m > M - S$ then
11: $p^{m-1}_{\min} = \text{DownsampleSubtract}(p^m_{\min}, p^m)$
12: else
13: $p^m_{\min} = -\infty$
14: end if
15: V_Cycle($m - 1$)
16: $p^m = p^m + \text{Prolong}(p^{m-1})$
17: for $i = 1$ to num_Post_Sweep do
18: Smooth (p^m) and enforce p^m_{\min} (PRBGS)
19: end for
20: end if

Pre-smoothing

$p_{i,j,k} = \max(p_{\min i,j,k}, \frac{1}{A_{i,j,k}} (b_{i,j,k} - A_{i+1,j,k}^i p_{i+1,j,k} - \ldots))$

Projected Red Black Gauss Seidel
Multigrid LCP Solver

Algorithm 2 V_Cycle(m)
1: if \(m == 1 \) then
2: \[\text{Solve the linear system, } A^1 p^1 = b^1 \]
3: else
4: for \(i = 1 \) to \(\text{num_Pre_Sweep} \) do
5: \[\text{Smooth}\left(p^m\right) \text{ and enforce } p^m_{\text{min}} \text{ (PRBGS)} \]
6: end for
7: \(r^m = b^l - A p^m \)
8: \(b^{m-1} = \text{Restrict}(r^m) \)
9: \(p^{m-1} = 0 \)
10: if \(m > M - S \) then
11: \(p^{m-1}_{\text{min}} = \text{DownsampleSubtract}(p^{m_\text{min}}, p^m) \)
12: else
13: \(p^{m_\text{min}} = -\infty \)
14: end if
15: \(\text{V_Cycle}(m - 1) \)
16: \(p^m = p^m + \text{Prolong}(p^{m-1}) \)
17: for \(i = 1 \) to \(\text{num_Post_Sweep} \) do
18: \[\text{Smooth}\left(p^m\right) \text{ and enforce } p^m_{\text{min}} \text{ (PRBGS)} \]
19: end for
20: end if

Pre-smoothing

\[p_{i,j,k} = \max(p_{\text{min}_i,j,k}, \frac{1}{A_{i,j,k}^{i+1,j,k}} (b_{i,j,k} - A_{i,j,k}^{i+1,j,k} p_{i+1,j,k} - \ldots)) \]

Projected Red Black Gauss Seidel
Algorithm 2 V_Cycle(m)
1: if $m == 1$ then
2: Solve the linear system, $A^1 p^1 = b^1$
3: else
4: for $i = 1$ to num_Pre_Sweep do
5: Smooth(p^m) and enforce p^m_{\min} (PRBGS)
6: end for
7: $r^m = b^l - A p^m$
8: $b^{m-1} = \text{Restrict}(r^m)$
9: $p^{m-1} = 0$
10: if $m > M - S$ then
11: $p_{\min}^{m-1} = \text{DownsampleSubtract}(p_{\min}^m, p^m)$
12: else
13: $p_{\min}^m = -\infty$
14: end if
15: V_Cycle($m - 1$)
16: $p^m = p^m + \text{Prolong}(p^{m-1})$
17: for $i = 1$ to num_Post_Sweep do
18: Smooth (p^m) and enforce p^m_{\min} (PRBGS)
19: end for
20: end if

Compute Residual
Multigrid LCP Solver

Algorithm 2 V_Cycle(m)

1: if \(m == 1 \) then
2: Solve the linear system, \(\mathbf{A}^1 p^1 = b^1 \)
3: else
4: for \(i = 1 \) to num_Pre_Sweep do
5: Smooth\((p^m)\) and enforce \(p_{min}^m \) (PRBGS)
6: end for
7: \(r^m = b^1 - \mathbf{A} p^m \)
8: \(b^{m-1} = \text{Restrict}(r^m) \)
9: \(p^{m-1} = 0 \)
10: if \(m > M - S \) then
11: \(p_{min}^{m-1} = \text{DownsampleSubtract}(p_{min}^m, p^m) \)
12: else
13: \(p_{min}^m = -\infty \)
14: end if
15: V_Cycle\((m - 1)\)
16: \(p^m = p^m + \text{Prolong}(p^{m-1}) \)
17: for \(i = 1 \) to num_Post_Sweep do
18: Smooth \((p^m)\) and enforce \(p_{min}^m \) (PRBGS)
19: end for
20: end if

Restrict
- Down sampling
- Tri-linear interpolation
Multigrid LCP Solver

Algorithm 2 V_Cycle(m)

1. if $m == 1$ then
2. Solve the linear system, $A^1 p^1 = b^1$
3. else
4. for $i = 1$ to num_Pre_Sweep do
5. Smooth(p^m) and enforce p^m_{\min} (PRBGS)
6. end for
7. $r^m = b^l - A p^m$
8. $b^{m-1} = \text{Restrict}(r^m)$
9. $p^{m-1} = 0$
10. if $m > M - S$ then
11. $p^{m-1}_{\min} = \text{DownsampleSubtract}(p^{m-1}_{\min}, p^m)$
12. else
13. $p^m_{\min} = -\infty$
14. end if
15. V_Cycle($m - 1$)
16. $p^m = p^m + \text{Prolong}(p^{m-1})$
17. for $i = 1$ to num_Post_Sweep do
18. Smooth (p^m) and enforce p^m_{\min} (PRBGS)
19. end for
20. end if

Want to make sure

$$p^m_{i,j,k} + \text{Prolong}(p^{m-1}_{i,j,k}) \geq p^m_{\min i,j,k}$$

Guaranteed by

$$p^{m-1}_{\min i,j,k} = \max_{a,b,c \in \{0,1\}} (p^{m}_{\min 2i+a,2j+b,2k+c} - p^{m}_{2i+a,2j+b,2k+c})$$

Only needed for the finest S levels.
Algorithm 2 V_Cycle(m)

1: if \(m == 1 \) then
2: Solve the linear system, \(A^1 p^1 = b^1 \)
3: else
4: for \(i = 1 \) to num_Pre_Sweep do
5: Smooth\((p^m) \) and enforce \(p^m_{\text{min}} \) (PRBGS)
6: end for
7: \(r^m = b^l - A p^m \)
8: \(b^{m-1} = \text{Restrict}(r^m) \)
9: \(p^{m-1} = 0 \)
10: if \(m > M - S \) then
11: \(p^m_{\text{min}} = \text{DownsampleSubtract}(p^m_{\text{min}}, p^m) \)
12: else
13: \(p^m_{\text{min}} = -\infty \)
14: end if
15: V_Cycle(m - 1)
16: \(p^m = p^m + \text{Prolong}(p^{m-1}) \)
17: for \(i = 1 \) to num_Post_Sweep do
18: Smooth\((p^m) \) and enforce \(p^m_{\text{min}} \) (PRBGS)
19: end for
20: end if

Recursive to solve for \(p \)
Multigrid LCP Solver

Algorithm 2 V_Cycle(m)
1. if \(m == 1 \) then
2. Solve the linear system, \(A^1 p^1 = b^1 \)
3. else
4. for \(i = 1 \) to num_Pre_Sweep do
5. Smooth(\(p^m \)) and enforce \(p^m_{min} \) (PRBGS)
6. end for
7. \(r^m = b^l - A p^m \)
8. \(b^{m-1} = \text{Restrict}(r^m) \)
9. \(p^{m-1} = 0 \)
10. if \(m > M - S \) then
11. \(p^{m-1}_{min} = \text{DownsampleSubtract}(p^{m}_{min}, p^m) \)
12. else
13. \(p^m_{min} = -\infty \)
14. end if
15. \(V_Cycle(m - 1) \)
16. \(p^m = p^m + \text{Prolong}(p^{m-1}) \)
17. for \(i = 1 \) to num_Post_Sweep do
18. Smooth (\(p^m \)) and enforce \(p^m_{min} \) (PRBGS)
19. end for
20. end if

Prolong
- Up sampling
- Tri-linear interpolation
Algorithm 2 V_Cycle(m)

1: if m == 1 then
2: Solve the linear system, $A^1 p^1 = b^1$
3: else
4: for $i = 1$ to num_Pre_Sweep do
5: Smooth(p^m) and enforce p^m_{min} (PRBGS)
6: end for
7: $r^m = b^l - A p^m$
8: $b^{m-1} = \text{Restrict}(r^m)$
9: $p^{m-1} = 0$
10: if $m > M - S$ then
11: $p^{m-1}_{\text{min}} = \text{DownsampleSubtract}(p^{m}_{\text{min}}, p^m)$
12: else
13: $p^m_{\text{min}} = -\infty$
14: end if
15: V_Cycle(m - 1)
16: $p^m = p^m + \text{Prolong}(p^{m-1})$
17: for $i = 1$ to num_Post_Sweep do
18: Smooth (p^m) and enforce p^m_{min} (PRBGS)
19: end for
20: end if
Multigrid LCP Solver

Algorithm 2 V_Cycle(m)
1: if $m == 1$ then
2: Solve the linear system, $A^1 p^1 = b^1$
3: else
4: for $i = 1$ to num_Pre_Sweep do
5: Smooth(p^m) and enforce p_{min}^m (PRBGS)
6: end for
7: $r^m = b^l - A p^m$
8: $b^{m-1} = \text{Restrict}(r^m)$
9: $p^{m-1} = 0$
10: if $m > M - S$ then
11: $p_{min}^{m-1} = \text{DownsampleSubtract}(p_{min}^m, p^m)$
12: else
13: $p_{min}^m = -\infty$
14: end if
15: V_Cycle($m - 1$)
16: $p^m = p^m + \text{Prolong}(p^{m-1})$
17: for $i = 1$ to num_Post_Sweep do
18: Smooth (p^m) and enforce p_{min}^m (PRBGS)
19: end for
20: end if

Differences from traditional Multigrid
Algorithm 3 Full_Cycle()

1: \(p^{\text{tmp}} = p^M \)
2: Compute \(p^M_{\text{min}} \)
3: \(p^M_{\text{min}} = p^M \)
4: \(r^M = b^M - Ap^M \)
5: for \(m = M - 1 \) down to 1 do
6: \(r^m = \text{Restrict}(r^{m+1}) \)
7: if \(m \geq M - S \) then
8: \(p^m_{\text{min}} = \text{DownsampleSubtract}(p^{m+1}_{\text{min}}, 0) \)
9: else
10: \(p^m_{\text{min}} = -\infty \)
11: end if
12: end for
13: \(b^1 = r^1 \)
14: Solve the linear system, \(A^1 p^1 = b^1 \)
15: for \(m = 2 \) to \(M \) do
16: \(p^m = \text{Prolong}(p^{m-1}) \)
17: \(b^m = r^m \)
18: \(\text{V_Cycle}(m) \)
19: end for
20: \(p^M = p^{\text{tmp}} + p^M \)
Results

3D Dam Break in a Box

64x64x64 Grid
Results

- Timing in ms, done in GTX480

<table>
<thead>
<tr>
<th>Case</th>
<th>Res</th>
<th>No LCP</th>
<th>LCP</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>BallBox</td>
<td>64^3</td>
<td>19.00</td>
<td>21.26</td>
<td>11.89</td>
</tr>
<tr>
<td>DambreakBox</td>
<td>64^3</td>
<td>18.89</td>
<td>21.17</td>
<td>12.07</td>
</tr>
<tr>
<td>RotatedBox</td>
<td>128^3</td>
<td>109.78</td>
<td>122.97</td>
<td>12.01</td>
</tr>
<tr>
<td>DambreakSphere</td>
<td>128^3</td>
<td>109.67</td>
<td>122.58</td>
<td>11.77</td>
</tr>
</tbody>
</table>

- No more than 12% slower than multigrid w/o LCP
 - MG faster than CG about 13X, CM11
 - Expected to be much faster than BBB07

- Because the solver used was much slower than CG
Discussions

- Only one way solid-liquid coupling is currently supported

- Two-way solid-liquid such as by incorporating Robinson-Mosher et al. 08
 - Will be challenging and interesting future work
Thank you for your attention!
Solving LCP

• BBB07 formulate as quadratic programming (QP)
 – Used PATH solver for it
 – Slow, feasible only for small 2D domain

• Narian et al. 10
 – Solve LCP resulting from sand simulation
 – Use conjugate gradient - liked QP solver